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Abstract

This paper presents a hybrid Artificial Neural Network (ANN) model that is developed for noisy data classification. The model, named

GRNNFA, is a fusion of the Fuzzy Adaptive Resonance Theory (FA) model and the General Regression Neural Network (GRNN) model. The

GRNNFA model not only retains the important features of the parent models, which include stable learning, fast training, and an incremental

growth network structure, but also facilitates the removal of noise that is embedded in training samples. The robustness of the GRNNFA model is

demonstrated by the Noisy Two Intertwined Spirals problem and other benchmarking problems. The model is then applied to Fisher’s Iris Data,

which is a real-world classification problem. The results show that the percentage of correct predictions is statistically higher than in variant

models of the adaptive resonance theory. The GRNNFA is further employed in a new application area of soft computing—fire dynamics, which is

highly non-linear in nature. Flashover is the most dangerous scenrio in the development of a compartment fire, during which, any unburned

combustible material, including the unburned soot particles inside the compartment, is ignited spontaneously and all combustible material is then

simultaneously involved in the burning process. The GRNNFA model is applied to predict the occurrence of the flashover in compartment fires

based on the fire size and the geometry of the fire compartment. The performance of the GRNNFA is compared with other published results, and it

is shown to be statistically superior to other ANN models.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many buildings and constructions are extensively equipped

with various fire extinguishing systems (e.g. fire detection

systems, sprinkler systems, and fire hydrant systems) to

minimize the extent of destruction and the number of fatalities

in fire cases. Nevertheless, fire, which consists of many

associated and dynamically interacting physical and chemical

processes that are non-linear in nature, is still considered to be a

major threat due to many circumstances. If there is no proper

means of control, then fires can be potentially lethal. Over the

past few decades, scientists and engineers have invested

considerable effort in investigating the dynamic behavior of

fires. Experiments and numerical modeling techniques have

been developed to improve fire extinguishing systems and to
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reduce fire risks. However, because fire experiments are rather

destructive and expensive, they are rarely carried out, and even

when they are, most of them are restricted to simple

geometrical structures. As a result, various numerical

approaches, such as zone and field models, have been

developed to provide a better understanding of fires. In

particular, the surge in the application of fire field models

that are based on the application of computational fluid

dynamic (CFD) techniques [1–10] to fire problems clearly

shows the desire to better understand and predict fire scenarios.

However, for fire safety engineering designs, it is well

recognized that these fire field models usually require extensive

computational resources (especially, lengthy computational

times over a large number of grids) to provide useful

information, such as transient hot smoke layer height and

temperature distribution. These models are therefore often

limited to application in the fire safety engineering design of

projects of considerably large-scale. The facilitation of the

efficient and economical application of fire models to medium-

and small-scale engineering projects through the shortening of
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Fig. 1. Development of a compartment fire. Flashover is the intermediate stage

between the pre-flashover and post-flashover stages. At the flashover stage, any

unburned combustible material inside the fire compartment is ignited by the

radiant heat that is released from the hot gases created by the fire.
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computer simulation time remains an unresolved but urgent

and important task for the fire research community.

Because of its superior ability to capture non-linear system

behavior and its extremely fast computational speed in making

predictions, the artificial neural network (ANN) model is an

alternative that can be applied to simulate the behavior of fires

by learning the history of the fire system. Currently, ANN

techniques have only been applied to fire detection systems

[11–15]. Such studies have confirmed the applicability of ANN

techniques, which have shown superior performance compared

to other traditional models, but the actual application of ANN

techniques to determine the consequences of fire is still very

limited. Lee et al. [16] applied the Feedforward Multi-layered

Perceptron (MLP) model [17] to the determination of sprinkler

actuation. The prediction results were found to be comparable

to the zone fire models. The Fuzzy ARTMAP (FAM) model

that was developed by Carpenter et al. [18] was employed by

Lee et al. [19] to determine the occurrence of flashover. The

highest rate of correct prediction was determined to be 97.6%.

Lee et al. also developed a probabilistic inference engine

(PEMap) [20] that is based on the theory of maximum

information entropy to deal with the uncertainties that are

embedded in fire data. This engine is also applied to determine

the occurrence of flashover. The results show that the

performance of the PEMap is competitive with that of FAM,

but it has a comparatively simple network structure and

working mechanism. These pioneer studies have confirmed the

applicability of ANN techniques in terms of determining the

consequences of fire.

The quality and quantity of available training samples are

critical to the success of ANN predictions. Due to the dynamic

behavior of fire and the high costs of full-scale fire experiments,

the actual data that are collected from existing fire experiments

are usually limited and noisy in nature. The GRNNFA model

[21] was specifically designed to remove the noise that is

embedded in training samples, and to change the network

complexity incrementally according to the distribution of the

training dataset. The GRNNFA model has been intensively

examined and its superior performance in noisy data regression

has been demonstrated [21]. The GRNNFA model has also

been successfully applied to predict the height of the thermal

interface in compartment fires [22]. In this paper, the GRNNFA

model is applied to determine the most important stage in the

development of a compartment fire—flashover.

Flashover is an intermediate stage in the development of a

compartment fire. A typical compartment fire growth charac-

teristic curve is shown in Fig. 1. At the initial stage, which is

called the growth phase, the fire continues to grow in the

presence of sufficient oxygen and fuel. The fire plume is then

established and transfers the heat energy to the upper part of the

compartment. When the hot gas reaches the ceiling, it spreads

and reaches the boundary walls and then starts to accumulate in

the upper part of the compartment and descend downwards.

The layer of hot gases and the fire plume emit radiant heat,

which raises the temperature of the surrounding combustible

material. When the intensity of this radiation is sufficiently

high, the temperature of the surrounding combustible material
is raised to their spontaneous ignition temperatures, and all of

the combustible material is ignited at the same time, creating a

most lethal fire scenario know as ‘flashover’. Different physical

definitions of flashover are summarized in [23,24]. However,

the most widely adopted criteria for the occurrence of the

flashover stage is a scenario in which the hot gas temperature at

10 mm below the ceiling reaches 600 8C [25]. These criteria

are adopted also in this study. After the flashover stage (the

post-flashover stage), all of the combustible material inside the

compartment is involved in the burning process. The total heat

release rate becomes steady, and reaches the highest level. The

fire continues to consume the combustible material as well as

the oxygen inside the compartment. The heat release rate of the

fire will be reduced when either the fuel or the oxygen inside

the compartment is exhausted, which is the start of the decay

stage. When all of the combustible material has been consumed

or the oxygen content is lower than the threshold level, the fire

will extinguish itself.

The structure of the rest of this paper is as follows. Section 2

introduces the formulation of the GRNNFA model. Section 3

describes the benchmarking results of the noisy data

classification problems. Section 4 details the methodology for

the application of the GRNNFA to predict the occurrence of the

flashover, and the predicted results are discussed. Section 5

concludes the paper.
2. Formulation of the GRNNFA model

The GRNNFA model is a hybrid model that combines the

GRNN and FA models. It retains the advantages of stable

learning and fast training, and also facilitates noise removal.

Here, the requirements for the predefinition of the network

structure are absent, and the network can automatically and

incrementally grow according to the sequence of the

presentation of the training samples. One of the litmus tests

of the GRNNFA model is its ability to be sufficiently trained

with a limited amount of sample data to provide qualitative and

quantitative predictions. Conventional ANN models usually

require large amounts of sample data for training to effectively
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generate reliable predictions, which is not possible in the area

of fire, because the amount of data that exists for training

purposes is limited and finite, and the samples are noisy in

nature. This new GRNNFA model has thus been developed to

address these problems.

The GRNNFA model comprises two modules: the FA,

employed for network training, and the GRNN, employed for

prediction. The basic approach to combining the GRNN and

FA models is first to group all of the training samples into

fewer numbers of prototypes using the FA. Upon completion of

the grouping, the prototypes of the FA are converted to kernels

in the GRNN module, which can then be used for prediction.

The architecture of the GRNNFA model is shown in Fig. 2. A

prototype created by the FA model is represented by the two

vertices of the hyper-rectangle and is stored in field F2 of the

module. As the format of the prototype is totally different from

that of the kernel which is stored in the GRNN module, a

conversion scheme is deployed to obtain the three parameters

of each Gaussian kernel (the center, output, and width) from

the corresponding hyper-rectangle.

During the training phase, the FA is employed to group the

training samples into a set of hyper-rectangular prototypes.

(Refer Fig. 2) The vigilance parameter r of the FA module, as

described in Ref. [26], controls the maximum size of the

prototypes to be created, which will adjust the resolution detail

of the behavior that is to be stored. Upon the completion of the

training phase, a compression scheme is employed to convert

the hyper-rectangles of the FA model to the Gaussian kernels

of the GRNNmodel. Eqs. (1) and (2) are the basic formulations

of the GRNNmodule and of the GRNNFAmodel with multiple

hyper-spherical kernels. Please refer to [27,28] for more details
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where

ŷ is the predicted output,x is the input vector,

xp is the pth of x,n is the total number of kernels,

m is the size of the input vector,fjp is the pth component of

the kernel j center, and

sj is the spread of the kernel j,bj is the output clustered to

kernel j.

The compression scheme for obtaining the three important

parameters of the Gaussian kernels (the center, label, and

width) of the GRNN module from the information in the

prototypes of the FA module (the vertices of the hyper-

rectangles) is described below.
2.1. Kernel center estimation

The FA is applied to establish prototypes in the input

domain according to the distribution of the inputs of the

samples. A prototype that is created by the FA is proposed for

conversion to the center of the corresponding kernel by the

method that is employed by Lim and Harrison [29,30].
Predicted Output

PREDICTION PHASE

Test input

∑ ∑

figure) and the GRNN module (right of the figure). A compression scheme was

o the Gaussian kernels of the GRNN module.
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The kernel center mJ of cluster J is determined by Eq. (3), where

aJi(iZ1,2,.,NJ) is the ith sample that is grouped into cluster J

and NJ is the total number of samples inside this cluster.

mJ Z

PNj

iZ1

aJi

NJ

(3)
2.2. Kernel label estimation

A statistical regression model can be developed by taking

the expected value over n number of kernels, as shown in Eq.

(4), where ŷ, xj, and P(qjjx) are, respectively, the predicted

output, the label of the kernel qj, and the probability of kernel qj
given the input vector x.

ŷZEðyjxÞZ
Xn
jZ1

xjPðqjjxÞ (4)

By applying Bayesian theory to Eq. (4) the regression model

that is shown in Eq. (5) can be obtained.
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The format of Eq. (5) is very similar to that of Eq. (1). It can be

observed that Nj in the denominator of Eq. (5) (the total number

of samples of kernel qj) is exactly equal to the value of Bj in Eq.

(2) by definition. To obtain a statistically justified prediction

model, it is proposed to equate Njxj in Eq. (5) to Aj in Eq. (1),

i.e.

xj Z
Aj

Nj

(6)

According to Eq. (6), the centroid of the output vectors of the

clustered input samples should be taken as the label of kernel

qj.

This compression scheme also facilitates the removal of

symmetrically distributed noise that is embedded in the

training samples. Let Jj2(m be a subspace of the input

domain that covers the prototype j that is created by the FA in

which the samples faj1; aj2;.; ajNj
g2Jj are clustered and let

bZf(a), i.e. be the underlying scalar function and ~b the noise-

corrupted output that correspond to the input a. The corrupted
output can be separated into clean and noisy components, as

shown in Eq. (7), where 3 is the symmetrically distributed noise

with zero mean:

~bjk Z f ðajkÞC3ðajkÞ cajk2Jj (7)

By integrating Eq. (7) over the subspace Jj, the noise content

is removed, which gives Eq. (8).ð
Jj

~bdJZ

ð
Jj

bdJ (8)
Eq. (8) can be discretized and formulated into Eq. (9).

XNj

kZ1

~bjk Z
XNj

kZ1

bjk (9)

The centroids of the clean outputs and the corrupted outputs

can be obtained by dividing Eq. (9) by Nj:

xj Z

PNj

kZ1

bjk

Nj

Z

PNj

kZ1

~bjk

Nj

(10)

Eq. (10) implies that the centroid of the clean outputs over Jj

can be obtained by projecting the centroid of the noise-

corrupted outputs in Jj to the output domain. This

determination of clean information from the available noise-

corrupted information demonstrates the noise removal.
2.3. Kernel width estimation

Multiple hyper-spherical kernels that are similar to those in

Ref. [28] are adopted in the development of the GRNNFA

model. Every kernel has its own radius of spread, and hence the

total number of kernel widths to be determined equals the total

number of kernels. Traditional approaches that are driven by

the error gradient become inefficient in determining large sets

of parameters. Here, the K-nearest-neighbors (kNN) approach

is proposed to evaluate the widths of the multiple hyper-

spherical kernels by the determination of a single parameter.

Each kernel width is determined according to Eq. (11), which is

similar to the scheme that is proposed by Lim and Harrison

[29,30], except that the number of the nearest neighbors varies.

sj Z
1

2k

Xk
kZ1

jjxjKxkjj jsk 1%k2IC%NK1 (11)

The width of kernel j is set to be half of the average distance

over k numbers of the nearest neighbors to kernel j. By using an

appropriate value for k and the vigilance parameter of the FA

model, a network structure with close to minimum validation

error can be achieved. The concept of this approach is similar

to the smoothing parameter of the original GRNN model. The

probability density surface that is created by the Parzen Density

Estimator [31] can be smoothened by increasing the value of k.

By suitably adjusting the value of k, the close optimum set of

the kernel widths can be obtained.

After being converted to the kernels of the GRNN module

by the proposed compression scheme, the prototypes that are

stored in field F2 of the FA module can then be used directly as

the original GRNN model for network prediction. In the

prediction phase, a test sample is fed to all of the kernels when

it is presented to the GRNN module. The outputs from the

kernels in response to the input vector are weighted and fed to

the nominator and denominator nodes of the summation layer.

The final prediction is obtained by dividing the output of the

numerator node by that of the denominator node.
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Fig. 3. Distribution of 194 clean samples. For easy visualization, white and

black crosses that are shown in the figure indicate the values of 0 and 1,

respectively. The training samples for the Noisy Two Intertwined Spirals

problem are prepared by introducing Gaussian noise (0,0.025) to the horizontal

and vertical positions of each clean sample.
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3. Benchmarking

3.1. Noisy two intertwined spirals

The original Two Intertwined Spirals synthetic benchmark

problem was designed by Land and Witbrock [32] to test the

performance of classifiers on binary classes, which is regarded

as a hard classification problem [33]. It was also employed by

Carpenter et al. to evaluate the performance of the FAM [18].

In this benchmarking problem, two spirals, each of which has

three complete turns, are created inside a unit square

([0,1]22(2). The task of the classifier is to discriminate the

unit square domain from either of the two spiral regions. There

are 194 clean samples (97 samples per spiral), which are

created with the equations as shown in Ref. [18], where faðtÞ1 ;

aðtÞ2 g2R2 is the location of the sample t at the input domain and

the corresponding output is b(t)Z(1, the value of which is either

1 or 0. The distribution of the 194 clean samples over the [0,1]2

space is shown in Fig. 3.
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Williamson modified the data generation of the Two

Intertwined Spirals to test the performance of the Gaussian

ARTMAP [34] in a noisy environment by introducing

Gaussian noise N(0,0.025) into the positions of the clean

samples. Three test cases A, B, and C with 100, 1000, and

10,000 noise-corrupted samples, respectively, were used to test

the performance of the GRNNFA model under different

numbers of training samples.

After several trials, the vigilance parameter of the GRNNFA

model was set to 0.95 and the value of k was found to be 2. A

total of 20 trials were performed for each of the cases with

different random seeds. As the noise-corrupted samples in this

study may not be exactly the same as those in Ref. [34],

bootstrapping [35,36] techniques were applied. In each test

case, the results of the 20 trials were used to obtain the

bootstrap mean with 2000 re-samplings. The bootstrap mean of

each pixel of the reconstructed images was taken as the

prediction result. The images were discretized by setting the

demarcation at the value of 0.5 to either 0 or 1. The images that

were reconstructed by the GRNNFA and the Gaussian

ARTMAP [34] are depicted in Fig. 4, which clearly shows

that, referring to the distribution of the clean samples as shown
in Fig. 3, the quality of the spirals that were reconstructed by

the GRNNFA is better than those reconstructed by the

Gaussian ARTMAP [34].
3.2. Fisher’s Iris Data

Fisher [37] introduced a benchmark dataset that contains the

sepal and petal measurements of different types of iris flowers.

The dataset can be downloaded from the website of the UCI

repository (www.ics.uci.edu/wmlearn/MLRepository.html).

There are 150 training samples, each of which consists of

four inputs and one output. The inputs are the measured lengths

and widths of the petals and the sepals, and the output is the

type of iris flower, such as Setosa, Versicolor, and Virginica.

The three types of iris flowers are shown in Fig. 5. The

distributions of the samples with respect to the dimensions of

the sepals and petals are shown in Fig. 6 for easy visualization.

It reveals that the classes of Versicolor and Virginica overlap in

both figures, whereas the class of Setosa is clearly separated

from the other two classes.

This classification benchmarking problem was used to

evaluate the performance of Falcon-ART [38] and Falcon-

ModifiedART (Falcon-MART) [39]. Falcon-MART was

developed to tackle the poor performance of Falcon-ART

when the classes of input data are similar and with poor

resistance to noise samples [39].

Falcon-ART is a neuro-fuzzy system that adaptively

increases the number of membership functions in the input

and output domains using Fuzzy ART according to the

complexities of the data distribution. It basically consists of

five layers, namely the input crisp layer, the input linguistic

layer, the rule layer, the output linguistic layer, and the output

http://www.ics.uci.edu/~mlearn/MLRepository.html


Fig. 4. The spirals reconstructed by the GRNNFA and the Gaussian ARTMAP.

The quality of the image reconstructed by the GRNNFA is clearly better than

that by the Gaussian ARTMAP (Williamson, 1996).
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crisp layer. FA is applied to autonomously increase the

partition of the input and output domains, or the number of

membership functions, and the input and output linguistic

layers are connected by the rule layer. Fisher’s Iris Data was

applied to Falcon-ART by Ref. [39] to illustrate the short-

comings of the model, which was subsequently improved as

Falcon-MART [39]. The major improvements are the

magnification of the difference in output values of the
Fig. 5. Iris Setosa, Versicolor and Virginica flowers. The photos are
membership functions of the same attribute to distinguish the

class of input sample and apply the slow learning of Fuzzy

ART to accommodate the network operation in a noisy

environment.

The Fisher’s Iris Data was employed to evaluate the

performance of Falcon-ART and Falcon-MART in a noisy

environment. The dataset contains 150 samples. The number of

samples for network training and testing strictly followed [39],

and were set to be 35 and 65%, respectively. The same

procedures were followed in this study to evaluate the

performance of the GRNNFA model. After several trials, the

best value of the vigilance parameter was found to be 0.95 and

the corresponding best value of k was determined to be three.

Twenty experiments were conducted with a random selection

of data for network training and testing. The prediction results

were concluded by estimating the mean and standard deviation

of the percentage of correct predictions for comparison with the

predictions of Falcon-ART and Falcon-MART, as shown in

Table 1. It can be observed that the GRNNFA model has the

highest percentage of correct predictions, and that the

corresponding standard deviation of the GRNNFA model is

lower than that of both Falcon-ART and Falcon-MART. It can

be preliminarily concluded that GRNNFA outperforms the

Falcon models in this benchmarking problem with high

stability, which indicates that the GRNNFA model is less

sensitive to noisy training samples (the samples in the

overlapped region). As the training and testing samples were

selected at random from the original dataset, the bootstrap

technique was applied to obtain a more representative result.

Table 2 shows the bootstrapped results with different numbers

of re-samplings. The changes in confidence limits and the mean

of the bootstrapping are less than 0.0003% with 1600 re-

samplings and above. The results that are obtained from the

1600 re-samplings are selected. It can also be observed that the

lower limit of the 95% confidence interval (95.7071%) is

higher than the mean values of both Falcon-ART and Falcon-

MART. It can be concluded that the performance of the

GRNNFA model is statistically superior to both Falcon-ART

and Falcon-MART in this noisy classification benchmarking

problem. Here, the standard deviations of Falcon-ART (7.54%)

and Falcon-MART (4.64%), which were obtained from only

three trials [39], are considered unjustified. The standard

deviation of the percentage of correct predictions of the

GRNNFA model (0.88%) is indicated in Table 1 for the sake of

complete and like for like comparison. To avoid
from http://www.evim.ethz.ch/uebungen/praxis/u3/irisbilder.htm.

http://www.evim.ethz.ch/uebungen/praxis/u3/irisbilder.htm
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Fig. 6. Distribution of iris data with respect to the sepal and petal dimensions.

Table 2

Bootstrap means and confidence limits of MSE for the Fisher’s Iris Data

problem

No. of re-sampling Lower limit of the

95% confidence

interval

Upper limit of the

95% confidence

interval

Mean
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misclassification, a confusion matrix approach is adopted. The

columns and rows indicate the target classes and predicted

classes, and the number of samples that are misclassified is

shown in the off-diagonal elements. In an ideal situation of

100% correct prediction in all classes, the value of the off-

diagonal elements should be zero to reflect zero misclassifi-

cation cases. Each element of the confusion matrix that is

represented in the form of the mean and limits of the 95%

confidence interval is obtained at by bootstrapping with 1600

re-samplings from the 20 trials. The results are shown in

Table 3.

The reason that no sample has been misclassified as Setosa,

according to Fig. 6 is because the Setosa samples are

locationally remote from the other two classes. As there is no

overlapping between the Setosa and the other two classes, the

decision boundary can be identified clearly, and thus the rate of

misclassification is zero. However, misclassifications were

found in the classes of the Versicolor and Virginica because the

samples for these two classes are very similar (overlap) and are

difficult to distinguish [39]. Nevertheless, the overall perform-

ance of GRNNFA is considered superior to both the Falcon-

ART and Falcon-MART models.
200 95.6566 96.5152 96.0987

400 95.7071 96.5152 96.1184

800 95.7576 96.5152 96.1196

1600 95.7071 96.5152 96.1119

3200 95.7071 96.5152 96.1121

6400 95.7071 96.5152 96.1106

Table 3

Confusion matrix of the GRNNFA prediction on Fisher’s Iris Data
4. Predicting the occurrence of flashover in compartment

fire

As it is expensive to obtain real fire data from full-scale

model experiments, computational fire simulations created by

computer software are usually employed to generate data sets

for the training of the GRNNFA model. The fire compartment,
Table 1

Prediction result of Fisher’s Iris Data by the GRNNFA compared with the

results predicted by the Falcon-ART and Falcon-MART adopted from Quek

and Tang (2001)

Model Mean of percentage of

correct prediction (%)

Standard deviation of percentage

of correct prediction (%)

Falcon-ART 75.76 7.54

Falcon-MART 94.95 4.64

GRNNFA 96.11 0.88
for simplicity, is assumed to be rectangular in shape with an

open door as illustrated in Fig. 7.

The interaction between fire and the environmental

parameters has been proposed by McCaffrey et al. [40]. In

his model, the temperature of the upper hot gas layer is a

function of the room geometry, including the dimensions of the

opening, the properties of the gas, the wall conduction

characteristics, and the heat release rate. The criteria for

flashover as defined by Hägglund et al. [24] were adopted in

this study, and were inputted into the computer package

FASTLite [41] to estimate the occurrence of flashover. The

engine for this computer package is FAST [42]. This

benchmarking test is a four-input and one-output classification

problem. In the computer simulation, the following parameters
Target classes Predicted classes

Setosa Versicolor Virginica

Setosa 32.74%

(31.35, 34.25%)

0.00%

(0.00, 0.00%)

0.00%

(0.00, 0.00%)

Versicolor 0.05%

(0.00, 0.15%)

31.31% (30.30,

32.35%)

2.00%

(1.55, 2.50%)

Virginica 0.00

(0.00, 0.00%)

1.79

(1.35, 2.25%)

31.10

(29.45, 32.60%)

Bracketed figures are the limits of the 95% confidence interval.
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Fig. 7. Fire compartment for modeling the occurrence of flashover.
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were randomly generated for the network training, and served

as the inputs of the GRNNFA model:

& room length (varies randomly from 2 to 10 m),

& room width (varies randomly from 2 to 10 m),

& room height (varies randomly from 2 to 10 m), and

& maximum heat release rate (varies randomly from 10

to 6000 kW).

Fast growth t-square (t2) fire [43] was also assumed

throughout the simulation. The growth of the t2-fire is described

by the expression _QZaðtKtiÞ
2, where _Q is the heat release rate

(kW), a is the growth constant (0.0469 kWsK2), ti is the initial

time (s), and t is the time (s).

The ceiling and walls in the fire simulation were assumed to

be made of 16-mm gypsum, and the floor was assumed to be

12.7-mm plywood. For the different combinations of room
Fig. 8. Data distribution for network training and testing (C: non-flashover, o:

flashover).
dimensions and maximum heat release rates, the occurrences of

flashover as determined by FASTlite [41] were recorded for

network training and testing. Three hundred and seventy-five

samples were generated, of which 190 were flashover samples

and 185 were non-flashover samples. Fig. 8 shows the

distribution of the samples. It can be seen that the classes of

flashover and non-flashover overlap, which creates a difficulty

in drawing the decision boundary between the two classes.

Two hundred and fifty samples were randomly drawn from

the original 375 samples for network training. The other

samples (125 samples) were reserved to test the performance of

the trained network. The prediction errors of the GRNNFA

model were also compared with those of FAM and PEMap as

shown in Lee et al. [20].

The GRNNFA model was applied to predict the occurrence

of flashover under the given fire scenario parameters (length,

width, and height of the compartment and the maximum heat

release rate). After several trials, the vigilance parameter was

set to be 0.86. The following confusion matrix shows the best

result has been predicted by the GRNNFA model.

It can be observed that the confusion matrix as shown in

Table 4 is symmetric and diagonally dominant, indicating that

the GRNNFA predicted the occurrence of flashover with

minimum bias to either class with a misclassification rate of

less than 4% (1.6%C1.6%). The prediction result is excellent

from an engineering point of view. The percentage of correct

predictions of non-flashovers is less than the correct percentage

of prediction of flashovers in this binary decision problem,
Table 4

Confusion matrix of the GRNNFA prediction on the occurrence of flashover in

a compartment fire

No. of cases Cases predicted by the

GRNNFA to be

non-flashover

Cases predicted by the

GRNNFA to be

flashover

Cases of non-flashover

in test samples

58 (46.4%) 2 (1.6%)

Cases of flashover in

test samples

2 (1.6%) 63 (50.4%)



Table 5

Bootstrapping results of percentage of correct prediction by the GRNNFA on

the occurrence of flashover in a compartment fire with different re-sampling

numbers

No. of re-sampling Lower limit of

95% confidence

interval

Mean Upper limit of

95% confidence

interval

200 91.92 92.6101 93.34

400 91.82 92.6158 93.36

800 91.78 92.5561 93.28

1600 91.78 92.6023 93.36

3200 91.86 92.6017 93.34

6400 91.86 92.6113 93.36

12800 91.86 92.5997 93.36
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because the number of non-flashovers samples (185 samples) is

less than that of the flashover samples (190 samples). The

knowledge that was contributed about non-flashovers was

hence less than that of flashovers, which led to the lower

percentage of correct predictions in the non-flashover cases.

As a randomization process was involved in the procedures

for the performance evaluation (the random extraction of

samples for network training and testing), the bootstrapping

technique was applied to statistically reveal the actual

performance of the GRNNFA model. Forty experiments with

different random data extraction for the training and test

datasets were carried out. Bootstrapping procedures with

different numbers of re-samples were applied to the 40

experimental results. The results are shown in Table 5.

Owing to the small variation (less than 0.02%) in the means

and confidence limits of the Root Mean Squared Error

(RMSE), the results that were obtained from 6400 re-samplings

were taken. Table 6 shows that the percentage of correct

predictions of both FAM and PEMap were lower than the lower

limit of the 95% confidence interval of the GRNNFA model,

and that is clearly demonstrates the superior performance of

GRNNFA compared with the other two models in the

determination of the occurrence of flashover.
5. Conclusions

The GRNNFA model that was developed for working in

noisy environment has been introduced. It has been critically

examined (Lee et al., 2004). The result of the Noisy Two

Intertwined Spirals problem has demonstrated the noise

removal feature of the GRNNFA model, which has also been

applied to Fisher’s Iris Data problem. The result shows that the

performance of the GRNNFA is superior to that of the Falcon
Table 6

Percentages of correct predictions by FAM, PEMap, and GRNNFA on the

occurrence of flashover in a compartment fire

Model Percentage of correct prediction (%)

FAM 91.2

PEMap 91.8

GRNNFA 92.60 (91.86, 93.36%)

Bracketed figures are the lower and upper limits of the 95% confidence interval

of the bootstrapped results.
ART family of models, which were developed for working in a

noisy environment. The GRNNFA has been applied to

determine the occurrence of flashover in compartment fires.

Noise that was created by computer simulation was introduced

into the training samples, and the result shows that the

performance of the GRNNFA model is statistically superior to

that of the Fuzzy ARTMAP and PEMap models in this

application.
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